Skip to main content

Time-Stretch Infrared Spectroscopy

 



Spectroscopy is an important tool of observation in many areas of science and industry. Infrared spectroscopy is especially important in the world of chemistry where it is used to analyze and identify different molecules. The current state-of-the-art method can make approximately 1 million observations per second. University of Tokyo researchers have greatly surpassed this figure with a new method about 100 times faster.

From climate science to safety systems, manufacture to quality control of foodstuffs, infrared spectroscopy is used in so many academic and industrial fields that it’s a ubiquitous, albeit invisible, part of everyday life. In essence, infrared spectroscopy is a way to identify what molecules are present in a sample of a substance with a high degree of accuracy. The basic idea has been around for decades and has undergone improvements along the way.

In general, infrared spectroscopy works by measuring infrared light transmitted or reflected from molecules in a sample. The samples’ inherent vibrations alter the characteristics of the light in very specific ways, essentially providing a chemical fingerprint, or spectra, which is read by a detector and analyzer circuit or computer. Fifty years ago the best tools could measure one spectrum per second, and for many applications, this was more than adequate.


More recently, a technique called dual-comb spectroscopy achieved a measurement rate of 1 million spectra per second. However, in many instances, more rapid observations are required in order to produce fine-grain data. For example, some researchers wish to explore the stages of certain chemical reactions that happen on very short time scales. This drive prompted Associate Professor Takuro Ideguchi from the Institute for Photon Science and Technology, at the University of Tokyo, and his team to look into and create the fastest infrared spectroscopy system to date.

Comments

Popular posts from this blog

Party Pairs

  Atoms in a gas can seem like partiers at a nanoscopic rave, with particles zipping around, pairing up, and flying off again in a seemingly random fashion. And yet physicists have come up with formulas that predict this behavior, even when the atoms are extremely close together and can tug and pull on each other in complicated ways. The environment within the nucleus of a single atom seems similar, with protons and neutrons also dancing about. But because the nucleus is such a compact space, scientists have struggled to pin down the behavior of these particles, known as nucleons, in an atom’s nucleus. Models that describe the interactions of nucleons that are far apart broken down when the particles pair up and interact at close range. Now an MIT-led team has simulated the behavior of protons and neutrons in several types of atomic nuclei, using some of the most powerful supercomputers in the world. The team explored a wide range of nuclear interaction models and found, surprising...

The Next Best Thing to Jezero Crater This Side of Mars

You may not be able to travel to Jezero Crater on  , but you can visit the next best thing: Lake Salda, Turkey. Researchers are using their understanding of Lake Salda to help guide the Mars 2020 mission, which will drop the Perseverance rover into the crater to search for signs of ancient life. “One of the great things about visiting Lake Salda is it really gives you a sense of what it would have been like to stand on the shores of ancient Lake Jezero,” said Briony Horgan, a planetary scientist at Purdue University and member of the Perseverance science team. “Carbonates are important because they are really good at trapping anything that existed within that environment, such as microbes, organics, or certain textures that provide evidence of past microbial life,” said Brad Garczynski, a graduate student at Purdue who works with Horgan. “But before we go to Jezero, it is really important to gain context on how these carbonates form on Earth in order to focus our search for signs f...

Flat Lens a Thousand Times Thinner Than a Human Hair

The lens can be used to produce high-resolution images with a wide field of view. It can serve as a camera lens in smartphones and can be used in other devices that depend on sensors (high-resolution wide-angle selfie obtained using metalens. A lens that is a thousand times thinner than a human hair has been developed in Brazil by researchers at the University of São Paulo’s São Carlos School of Engineering (EESC-USP). It can serve as a camera lens in smartphones or be used in other devices that depend on sensors.  “In the present technological context, its applications are almost unlimited,” Emiliano Rezende Martins, a professor in EESC-USP’s Department of Electrical Engineering and Computing and last author of a published paper on the invention, told Agência FAPESP. The paper is entitled “On Metalenses with Arbitrarily Wide Field of View” and is published in ACS Photonics. The study was supported by FAPESP via a scholarship for a research internship abroad awarded to Augusto Mart...