Skip to main content

Forget the Flame to Reduce CO2 Emissions

 


Just as a living organism continually needs food to maintain itself, an economy consumes energy to do work and keep things going. That consumption comes with the cost of greenhouse gas emissions and climate change, though. So, how can we use energy to keep the economy alive without burning out the planet in the process?

In a paper in PLOS ONE, University of Utah professor of atmospheric sciences Tim Garrett, with mathematician Matheus Grasselli of McMaster University and economist Stephen Keen of University College London, reports that current world energy consumption is tied to unchangeable past economic production. And the way out of an ever-increasing rate of carbon emissions may not necessarily be ever-increasing energy efficiency–in fact, it may be the opposite.

Thermoeconomics

This study marks the beginning of the collaboration between Garrett, Grasselli, and Keen. They’re now working to connect the results of this study with a full model for the economy, including a systematic investigation of the role of matter and energy in production. Garrett is an atmospheric scientist. But he recognizes that atmospheric phenomena, including rising carbon dioxide levels and climate change, are tied to human economic activity. “Since we model the earth system as a physical system,” he says, “I wondered whether we could model economic systems in a similar way.”

He’s not alone in thinking of economic systems in terms of physical laws. There’s a field of study, in fact, called thermoeconomics. Just as thermodynamics describes how heat and entropy (disorder) flow through physical systems, thermoeconomics explores how matter, energy, entropy, and information flow through human systems.

Future work

Many of these studies looked at correlations between energy consumption and current production, or gross domestic product. Garrett took a different approach; his concept of an economic system begins with the centuries-old idea of a heat engine. A heat engine consumes energy at high temperatures to do work and emits waste heat. But it only consumes. It doesn’t grow.



Comments

Popular posts from this blog

Party Pairs

  Atoms in a gas can seem like partiers at a nanoscopic rave, with particles zipping around, pairing up, and flying off again in a seemingly random fashion. And yet physicists have come up with formulas that predict this behavior, even when the atoms are extremely close together and can tug and pull on each other in complicated ways. The environment within the nucleus of a single atom seems similar, with protons and neutrons also dancing about. But because the nucleus is such a compact space, scientists have struggled to pin down the behavior of these particles, known as nucleons, in an atom’s nucleus. Models that describe the interactions of nucleons that are far apart broken down when the particles pair up and interact at close range. Now an MIT-led team has simulated the behavior of protons and neutrons in several types of atomic nuclei, using some of the most powerful supercomputers in the world. The team explored a wide range of nuclear interaction models and found, surprising...

The Next Best Thing to Jezero Crater This Side of Mars

You may not be able to travel to Jezero Crater on  , but you can visit the next best thing: Lake Salda, Turkey. Researchers are using their understanding of Lake Salda to help guide the Mars 2020 mission, which will drop the Perseverance rover into the crater to search for signs of ancient life. “One of the great things about visiting Lake Salda is it really gives you a sense of what it would have been like to stand on the shores of ancient Lake Jezero,” said Briony Horgan, a planetary scientist at Purdue University and member of the Perseverance science team. “Carbonates are important because they are really good at trapping anything that existed within that environment, such as microbes, organics, or certain textures that provide evidence of past microbial life,” said Brad Garczynski, a graduate student at Purdue who works with Horgan. “But before we go to Jezero, it is really important to gain context on how these carbonates form on Earth in order to focus our search for signs f...

Time-Stretch Infrared Spectroscopy

  Spectroscopy is an important tool of observation in many areas of science and industry. Infrared spectroscopy is especially important in the world of chemistry where it is used to analyze and identify different molecules. The current state-of-the-art method can make approximately 1 million observations per second. University of Tokyo researchers have greatly surpassed this figure with a new method about 100 times faster. From climate science to safety systems, manufacture to quality control of foodstuffs, infrared spectroscopy is used in so many academic and industrial fields that it’s a ubiquitous, albeit invisible, part of everyday life. In essence, infrared spectroscopy is a way to identify what molecules are present in a sample of a substance with a high degree of accuracy. The basic idea has been around for decades and has undergone improvements along the way. In general, infrared spectroscopy works by measuring infrared light transmitted or reflected from molecules in a sa...